Tailoring Physical Aging in Super Glassy Polymers with Functionalized Porous Aromatic Frameworks for CO2 Capture

نویسندگان

  • Cher Hon Lau
  • Kristina Konstas
  • Cara M. Doherty
  • Shinji Kanehashi
  • Berkay Ozcelik
  • Sandra E. Kentish
  • Anita J. Hill
  • Matthew R. Hill
چکیده

A series of chemically functionalized porous aromatic frameworks (PAFs) have been synthesized and deployed within mixedmatrix membranes for gas separation. This series of PAFs delivered for the first time simultaneous control of selective gas transport and physical aging within the membranes. New composites including native and metalated fullerenes were also prepared, and the composites exhibited exceptional increases in their porosity, which in turn resulted in ultrafast gas transport. CO2 permeability following PAF-1-Li6C60 infusion within poly(trimethylsilylpropyne) was as high as 50 600 Barrer, a 70% improvement. Remarkably, just 9% of this permeation rate diminished after 1 year of physical aging, compared to 74% in the native polymer. A series of characterization techniques revealed this phenomenon to be due to intercalation of polymer chains within the PAF pores, the strength of which is controlled by the levels of chemical functionalization and porosity. The membranes were exploited for gas separations, in particular the stripping of CO2 from natural gas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ending aging in super glassy polymer membranes.

Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This...

متن کامل

Gas-separation membranes loaded with porous aromatic frameworks that improve with age.

Porosity loss, also known as physical aging, in glassy polymers hampers their long term use in gas separations. Unprecedented interactions of porous aromatic frameworks (PAFs) with these polymers offer the potential to control and exploit physical aging for drastically enhanced separation efficiency. PAF-1 is used in the archetypal polymer of intrinsic microporosity (PIM), PIM-1, to achieve thr...

متن کامل

Functionalized Polymeric Membranes for CO2 Capture

Reducing CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of membrane materials with high separation performance ...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

Accessing functionalized porous aromatic frameworks ( PAFs ) through a de novo approach 3

There has been significant recent interest in microporous organic polymeric (POP) materials due to advances in their synthesis and recognition of their potential applications in catalysis, gas storage and release, and chemical separations. New synthesis strategies involving self-condensation or cross-coupling reactions have led to a variety of POPs, including crystalline or semi-crystalline cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015